Competition of inertia and deformability: motion of deformable particles in channel flow

Timm Krüger¹, Badr Kaoui², Jens Harting²

Motivation

The motion of deformable particles in a planar Poiseuille flow has not been entirely understood. On the one hand, it is known that the deformability of particles (expressed by the capillary number \(\text{Ca} \), the ratio of viscous fluid and elastic particle stresses) promotes a migration towards the centerplane of the flow in the absence of inertia (zero Reynolds number, \(\text{Re} = 0 \)). On the other hand, inertia effects are responsible for an outward migration of rigid particles (\(\text{Ca} = 0 \)) close to the centerplane [1, 2]. Although the behavior of single deformable capsules in channel flow at finite \(\text{Re} \) has been studied recently [3, 4, 5], not much is known about deformable particle suspensions for varying capillary and Reynolds numbers. We present 3D simulation results for systems with both finite \(\text{Ca} \) and \(\text{Re} \) at intermediate volume fractions and discuss inertia and deformability effects on the lateral particle distribution and apparent viscosity.

Numerical methods

1) Fluid solver: lattice Boltzmann method (LBM), D3Q19 LBGK [6, 7]
2) Elastic capsules: finite element method (FEM) [8, 9, 10]
3) Fluid-structure interaction: immersed boundary method (IBM) [11, 12]

Setup and parameter space

Semi-dilute suspension of deformable capsules, \(\phi = 0.1 \)
Force-driven flow in confined channel, \(\chi = 2r/H = 0.2 \)
Three control parameters:
- Fluid viscosity \(\eta \), capsule elasticity \(\kappa_s \), external forcing \(f \)

Characteristic dimensionless numbers:
- Reynolds number \(\text{Re} = \frac{\bar{u} H}{\eta f} \)
- Capillary number \(\text{Ca} = \frac{\eta f}{\kappa_s} = \frac{f H r}{4 \kappa_s} \)
Investigated parameter range: \(3 < \text{Re} < 333, 0.003 < \text{Ca} < 0.3 \)
What is the effect of these two parameters on the suspension properties?

Results

One observes significant effects due to deformability and inertia on:
1) microstructure (particle clustering)
2) lateral particle distribution (depletion layer width)
3) viscosity (transport efficiency)
4) velocity fluctuations

Conclusions

A wide range of \(\text{Re} \) and \(\text{Ca} \) has been investigated (covering quasi-Stokesian and inertial regimes as well as quasi-rigid and strongly deformed particles). A significant particle clustering is observed for quasi-rigid particles at intermediate Reynolds numbers (\(\text{Re} = 50 \)). Inertia plays different roles, depending on deformability:
1) low \(\text{Ca} \) (quasi-rigid): inertia opposes depletion and increases viscosity.
2) high \(\text{Ca} \) (deformed): inertia supports depletion and decreases viscosity.

References

Acknowledgments

We thank NWO/STW (VIDI grant 10787 of J. Harting) for financial support.